
Digital Object Identifier (DOI) 10.1140/epjc/s2005-02254-5
Eur. Phys. J. C 43, 127–130 (2005) THE EUROPEAN

PHYSICAL JOURNAL C

D-mesons in dense nuclear matter
L. Tolós1,a, J. Schaffner-Bielich1, A. Mishra2

1 Institut für Theoretische Physik and FIAS, J. W. Goethe-Universität, Postfach 11 19 32, 60054 Frankfurt am Main, Germany
2 Department of Physics, I.I.T. Delhi, New Delhi – 110 016, India

Received: 14 January 2005 /
Published online: 31 May 2005 – c© Springer-Verlag / Società Italiana di Fisica 2005

Abstract. The D-meson properties in dense nuclear matter are studied. The D-meson spectral density is
obtained within the framework of a coupled-channel self-consistent calculation, assuming as bare meson–
baryon interaction a separable potential. The Λc(2593) resonance is generated dynamically in our coupled-
channel model. The medium modifications of the D-meson properties due to Pauli blocking and the dressing
of D-mesons, nucleons and pions are also studied. We conclude that the self-consistent coupled-channel
process reduces the in-medium effects on the D-meson compared to previous literature which did not
consider the coupled-channel structure.
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1 Introduction

The study of the properties of hadrons in hot and dense
matter has become a subject of lively interest over the
last years in connection with heavy-ion experiments [1] as
well as due to implications for astrophysical phenomena.
In particular, a strong effort has been invested in under-
standing the properties of antikaons due to the possibility
of kaon condensation in neutron stars [2]. On the other
hand, K± production from nuclear collisions at GSI has
shown that in-medium properties of kaons have been seen
in different experimental observables like collective flow
[3]. Medium modifications of D- (D̄-) mesons, which show
analogy with K̄ (K) coming from the replacement of the s
quark (s antiquark) by the c quark (c antiquark), have also
become a matter of recent interest. The study of medium
modifications of the D-meson could have important conse-
quences for open-charm enhancement in nucleus–nucleus
collisions [4] as well as for J/Ψ suppression [5].

The NA50 Collaboration [6] has observed an enhance-
ment of dimuons in Pb + Pb collisions which has been
tentatively attributed to an open-charm enhancement in
nucleus–nucleus collisions relative to proton–nucleus re-
actions at the same

√
s. On the other hand, an appre-

ciable contribution for the J/Ψ suppression is expected
to be due to the formation of the quark–gluon plasma
[7]. However, the suppression could also be understood in
an hadronic environment due to inelastic comover scat-
tering in the high-density phase of nucleus–nucleus col-
lisions and, then, the medium modifications of the D-
mesons should modify the J/Ψ absorption [8]. Finally,
the D-mesic nuclei, which were predicted by the quark–
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meson coupling (QMC) model [9] could also give informa-
tion about the in-medium properties of the D-meson. It
is shown that the D−-meson forms narrow bound states
with 208Pb while the D0 is deeply bound in nuclei. There-
fore, it is of importance to understand the interaction of
the D-meson with the hadronic medium.

At finite density, the medium modifications have been
analyzed via the QCD sum-rule (QSR) approach [10] as
well as using the already mentioned QMC model [9]. These
models predict the mass drop of the D-meson to be of the
order of 50–60 MeV at nuclear matter density. A similar
drop at finite temperature is suggested from the lattice
calculations for heavy-quark potentials [11] together with
a recent work based on a chiral model [12].

In this present paper, the spectral density of a D-
meson embedded in dense matter is shown, incorporating
the coupled-channel effects as well as the dressing of in-
termediate propagators. These medium effects have been
ignored in the previous literature. We will show that these
effects turn out to be fundamental for describing the D-
meson in dense matter [13].

2 The D-meson spectral density

We present the formalism to obtain the self-energy and,
hence, the spectral density of a D-meson embedded in
infinite symmetric nuclear matter. For this purpose, the
knowledge of the in-medium DN interaction is required.
This amplitude is obtained assuming, as a bare interac-
tion, a separable potential model,

Vi,j(k, k′) =
g2

Λ2 Ci,jΘ(Λ − k)Θ(Λ − k′) , (1)
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where g and Λ are the coupling constant and cutoff, re-
spectively. These two parameters will be determined by
fixing the position and the width of the Λc(2593) reso-
nance. For the interaction matrix Cij , we use the result de-
rived from SU(3) flavor symmetry [14]. We are, therefore,
confronted with a coupled-channel problem since this in-
teraction allows for the transition from DN to other chan-
nels, namely, πΛc, πΣc, ηΛc and ηΣc, all having charm
c = 1. The G-matrix is then given by

〈M1B1 | G(Ω) | M2B2〉 = 〈M1B1 | V | M2B2〉
+

∑
M3B3

〈M1B1 | V | M3B3〉 QM3B3

Ω − EM3 − EB3 + iη

×〈M3B3 | G(Ω) | M2B2〉 , (2)

with Mi and Bi being the possible mesons (D, π, η) and
baryons (N , Λc, Σc), respectively, and their corresponding
quantum numbers, and Ω is the so-called starting energy.
The function QM3B3 stands for the Pauli operator while
EM3(B3) is the meson (baryon) single-particle energy (see
[13] for more details).

The D-meson single-particle potential is obtained in
the Brueckner–Hartree– Fock approach,

UD(k, Eqp
D )

=
∑

N≤F

〈DN | GDN→DN (Ω = Eqp
N + Eqp

D ) | DN〉, (3)

where the summation over nucleonic states is limited by
the nucleon Fermi momentum. From (3) one observes that,
since the DN interaction (G-matrix) depends on the D-
meson single-particle energy, which in turn depends on
the D-meson potential, we are confronted with a self-
consistent problem. After self-consistency for the on-shell
value UD(kD, Eqp

D ) is achieved, one can obtain the full self-
energy defined by

ΠD(kD, ω) = 2
√

k2
D + m2

D UD(kD, ω). (4)

This self-energy can then be used to determine the D-
meson single-particle propagator

DD(kD, ω)

=
1

ω2 − k2
D − m2

D − 2
√

m2
D + k2

DUD(kD, ω)
, (5)

and the corresponding spectral density

SD(kD, ω) = − 1
π

Im DD(kD, ω) . (6)

As mentioned previously, in our self-consistent scheme,
only the value of the potential UD at the quasiparticle
energy has been determined self-consistently. This scheme,
in spite of being a simplification, is sufficiently good as
already shown in [15] for the K̄-meson.
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Fig. 1. Mass distribution of the πΣ state as a function of the
CM energy for a given set of coupling constants and cutoffs,
which reflect the Λc(2593) resonance

3 Results

We start this section by showing in Fig. 1 the mass distri-
bution of the πΣc state as a function of the CM energy for
different sets of coupling constants g and cutoffs Λ. This
mass distribution is given by

dσ

dm
∝| T I=0

πΣc→πΣc
|2 pCM (7)

where pCM is the πΣc relative momentum and T I=0
πΣc→πΣc

is the isospin zero component of the on-shell s-wave T -
matrix for the πΣc channel. Our coupled-channel calcula-
tion generates dynamically the Λc(2593) resonance. The
position (2593.9 ± 2 MeV) and width (Γ = 3.6+2.0

−1.3 MeV)
are obtained for a given set of coupling constants and cut-
offs running from 0.8 GeV to 1.4 GeV.

Once the position and width of the Λc(2593) resonance
are reproduced dynamically, we study the effect of the dif-
ferent medium modifications on the resonance. In Fig. 2 we
display the real and imaginary parts of the s-wave DN am-
plitude for I = 0 and I = 1 within different approaches: T -
matrix calculation (dotted lines), self-consistent calcula-
tion for the D-meson at ρ = ρ0 (solid lines), where ρ0 is the
nuclear saturation density, and self-consistent calculation
for the D-meson including the dressing of nucleons and
the pion self-energy at ρ = ρ0 (long-dashed lines). When
the nucleons and pions are dressed in the self-consistent
process, the picture depicted is completely different from
the case when only D-mesons are dressed self-consistently.
In fact, the DN interaction in I = 0 becomes smoother in
the region of energies where the Λc(2593) resonance was
generated when only the D-mesons were dressed. Further-
more, we observe one structure around 2.5 GeV below the
πΣc threshold and a second one at 2.8 GeV, which lies
below the DN threshold. Both structures are states with
the Λc-like quantum numbers. Whether the first resonant
structure is the in-medium Λc(2593) resonance and the
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Fig. 2. Real and imaginary parts of the DN amplitude for
s-wave in the I = 0 (left panels) and I = 1 (right panels)
channels as functions of the center-of-mass energy at total mo-
mentum zero for Λ = 1 GeV and g2 = 13.4 and for different
approaches: T -matrix calculation (dotted lines), self-consistent
calculation for the D-meson at ρ = ρ0 (solid lines), where ρ0 is
the nuclear saturation density, and self-consistent calculation
for the D-meson including the dressing of nucleons and the
pion self-energy at ρ = ρ0 (long-dashed lines)

second bump is a new resonance is something that de-
serves further analysis.

The dependence on the cutoff and coupling constants
together with the isospin decomposition of the in-medium
DN interaction have also been a matter of study. In Fig. 3
we show the real and imaginary parts of the D-meson
potential at kD = 0 as functions of the density for the
two self-consistent approaches that were mentioned be-
fore: self-consistent calculation for the D-meson (left pan-
els) and self-consistent calculation of the D-meson includ-
ing the dressing of nucleons and pions (right panels). As
regards the isospin decomposition, when only D-mesons
are dressed, the D-meson potential is governed by the
I = 1 component, while, when nucleons and pions are
dressed, the I = 0 component dominates because of the
structure at 2.8 GeV present in the G-matrix. On the
other hand, we observe a weak dependence on the chosen
set of cutoffs and coupling constants. It is interesting to
see that, for any chosen parameters, the coupled-channel
effects seem to result in an overall reduction of the in-
medium effects independent of the in-medium properties
compared to previous literature [9–12]. For example, when
only the D-meson is dressed, we obtain a range of values
for the D-meson potential at ρ = ρ0 between 8.6 MeV for
Λ = 0.8 GeV and −11.2 MeV for Λ = 1.4 GeV. For the full
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Fig. 3. Real and imaginary parts of the D-meson potential
at kD = 0 as functions of the density, including the isospin
decomposition for Λ = 1 GeV and g2 = 13.4, for different sets
of coupling constants and cutoffs and the two self-consistent
approaches discussed in the text: self-consistent calculation for
the D-meson (left panels) and self-consistent calculation of the
D-meson including the dressing of nucleons and pions (right
panels)
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Fig. 4. D-meson spectral density at kD = 0 as a function of
energy with Λ = 1 GeV and g2 = 13.4 for different densities
and for the two approaches discussed in the text: self-consistent
calculation for the D-meson (left panel) and self-consistent cal-
culation of the D-meson including the dressing of nucleons and
pions (right panel)

self-consistent calculation, the range of values covered lies
in between 2.6 MeV for Λ = 0.8 GeV and −12.3 MeV for
Λ = 1.4 GeV.

Finally, once the self-consistency is reached, we cal-
culate the full D-meson self-energy and the correspond-
ing spectral density. The spectral density at zero momen-
tum is shown in Fig. 4 for Λ = 1 GeV and g2 = 13.4,
and for several densities in the two self-consistent ap-
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proaches considered before. When only the D-meson is
dressed self-consistently (left panel of Fig. 4), the quasi-
particle peak moves slightly to lower energies as density
increases since the D-meson potential becomes more at-
tractive (see left panels of Fig. 3). The Λc resonance is seen
for energies around 1.63–1.65 GeV as a second peak on the
left-hand side of the quasiparticle peak. For the second ap-
proach when nucleons and pions are dressed (right panel of
Fig. 4), the structure around 2.8 GeV of Fig. 1 mixes with
the quasiparticle peak, which translates into a broadening
of the spectral density at the quasiparticle energy.

4 Concluding remarks

We have performed a microscopic self-consistent coupled-
channel calculation of the single-particle potential and,
hence, the spectral density of a D-meson embedded in
symmetric nuclear matter taking as bare interaction a sep-
arable potential [13]. The Λ(2593)c resonance has been
obtained dynamically. We have also studied the medium
effects on that resonance and, therefore, on the D-meson
potential coming from the Pauli blocking and the dress-
ing of nucleons and pions. We have concluded that, inde-
pendently of the medium properties of the intermediate
states, the self-consistent coupled-channel effects result in
a small attractive real part of the in-medium D-meson
potential. However, the production of D-mesons in the
nuclear medium will be still enhanced due to the broad
D-meson spectral density. This effect is similar to the one
obtained for the enhanced K̄ production in heavy-ion colli-
sions [16], where the overlap of the Boltzmann factor with
the strength in the low-energy region of the K̄ spectral
density turned out to be a source of additional attraction
and, hence, increased the produced number of K̄. The
in-medium effects seen in this work can be studied with
the future PANDA experiment at GSI [17]. In this experi-
ment, in-medium changes of the open-charm hadrons will
be addressed by the study of the excitation function and
the correlation function of D and D̄ mesons.
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